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The purpose of this paper is to model China's province-to-province migration 
flows using spatial interaction models. To date, conventional, gravity-type, spatial 
interaction models have typically employed information only on the number of 
movers and on the distances between places. This paper employs a new, multivari­
ate approach to such interaction modeling by entering additional variables into 
the traditional modeling framework. In this particular application, two variables 
are added, namely, a measure of past migration, called migrant stock, and another 
measure of annual average total investment. The empirical verification of the 
models employs two interprovincial migration data sets for China. These involve 
the 1982-87 and 1985-90 migration flow data, consisting of two 28 x 28 data 
matrices. The results of the calibration show that the models with the additional 
variable(s) are capable of distributing migration flows with a much-improved 
degree of accuracy, in comparison with the conventional model. The calibration 
therefore provides empirical support for the validity of the multivariate approach 
to the spatial interaction modeling of migration flows. 

Keywords: Spatial interaction model, additional variables, interprovincial migra­
tion flows, China. 

The family of spatial interaction models (SIMs) due to Wilson (1967,1971) has been 
regarded as a seminal work. It is indicated, however, that the SIMs can hardly provide 
behavioral explanation for migration processes because of the distributional nature 
of the model (Hay, 1991). In traditional gravity and Wilson-type models, the spatial 
separation, usually expressed as distance, time, or travel costs between regions, is the 
only variable for explanation (Fotheringham, 1997). Yet, the significance of distance 
or travel costs in spatial interaction, such as migration flows, has been reduced over 
the years (Plane, 1982; Chisholm, 1996). Although migration researchers (Snickars 
and Weibull, 1977; Webber, 1979) proposed a framework in which additional 
variables can be included in the conventional SIMs that may improve the model's 
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explanatory power, the framework was rarely used, except for a few studies that 
employed an historical migration matrix (Plane, 1981; Pooler, 1985). The present 
research seeks to address this issue by incorporating two additional variables into 
conventional SIMs. Including variables at the destination is a process of weighing the 
destination's capabilities in attracting migrants from origin. The new models used 
in the present study are termed multivariate spatial interaction models (MSIMs). To 
this end, province-to-province Chinese migration data from two sources, the 1987 
one percent survey and the 1990 national census, are employed. 

Investigation of Chinese interprovincial migration flows has been very limited. 
Recently, there has been an attempt to estimate China's regional migration using the 
log-linear version of the classical gravity model (Shen, 1999). However, attempts to 
model province-to-province migration flows have been lacking. Hence, the present 
research is significant in two ways for Chinese migration studies. In the first place, 
migration modeling undertaken so far has been primarily based on concepts from 
Western free-market economics (Haynes and Fotheringham, 1984). Little attention 
has been given to migration in other types of nations in which a mixed economy with 
planned and free-market mechanism exists. Therefore, it may be useful and interest­
ing to model migration flow patterns in a socioeconomic setting such as China's. 
In the second place, because the migration process is a response to socioeconomic 
differentials, it would be equally appealing to model interprovincial migration flows 
to provide some scientific guide for China's socioeconomic planning. 

This paper is organized as follows. A brief introduction of the background of China's 
interprovincial migration is provided first. This is followed by the derivation of the 
MSIMs, a discussion of the two additional variables, the modeling results. and a 
conclusion. 

BACKGROUND OF INTERPROVINCIAL MIGRATION IN CHINA 

Prior to the late 1970s, internal migration in China was carefully restricted for 
the sake of social stability and for protecting the benefits of urban residents. In par­
ticular, rural-to-urban migration was strictly controlled (Goldstein, 1990). Migra­
tion restrictions had been exercised through the usc of the Household Registration 
System (HRS) since the late 1950s and in particular since the end of the Great Leap 
Forward (1959-61). The HRS specifies that all who lived in rural areas, and were 
not state employees, were to be treated as agricultural householders and were not 
eligible for grain rations and other daily necessities from the State. Urban residents 
and state employees, however, were treated as members of urban or non-agricul­
tural households and were eligible for guaranteed grain rations (Cheng and Selden, 
1994). In 1958, the Chinese government stipulated the Ordinances of Household 
Registration for Chinese Residence, which required those who wished to move to 
urban places to have permission from the destination city (Zhang, 1988). 
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In the period before the late 1970s, some interprovincial migration had been allowed 
to take place. Such population movement, however, was not based on migrants' 
calculations of costs and returns, but rather depended upon socioeconomic planning 
strategy, or the military and ideological considerations of the government (Ma and 
Wei, 1997). One of the economic strategies was to develop the inland provinces in 
the 1960s and 1970s, called the third-front construction, which mobilized consid­
erable population from coastal areas into the backward inland provinces (Yabuki, 
1995; Linge and Forbes, 1990; Naughton, 1988). During approximately the same 
period of time, another program, the urban-to-rural youth transfer, also known as 
the youth rustication (shang-shan xia-xiang), was carried out. It was a resettlement 
scheme to transfer urban graduates of secondary schools to rural areas, in particular 
to the frontier regions such as Xinjiang (Northwest), Heilonjiang (Northeast), and 
Yunnan (Southwest) (Bernstein, 1977; White III, 1979; see Figure 1). It is estimated 
that the number of the dispatched urban youths is in the range between 13.2 million 
(White III, 1979) and 17 million (Shen and Tong, 1992) in the period of 1960s and 
1970s. The geographical origins of the transfer were urban centers, in particular 
the three big cities of Beijing, Tianjin, and Shanghai. 

With the end of implementation of these two programs in the late 1970s, return 
migration to the origins in the coast provinces occurred in the 1980s due to the 
emphasis on the open door policy (Banister, 1987). The implication of such return 
flows is apparent since they constitute an important part of the interprovincial mi­
gration during the period 1982-1990. 

Since the late 1970s the long-standing restricted migration policy in China has 
been relaxed with the introduction of economic reforms that aim at nurturing a free­
market mechanism in the socialist economy. This policy change not only relieved 
some of the burden of rural population pressure, but also facilitated urban-to-urban 
migration. As a result, the volume of internal migration has greatly increased. How­
ever, information on the size of interprovincial migration flows was not available 
until the 1987 one percent population survey (China, 1988) and the 1990 national 
census (China, 1993). 

The 1987 survey collected the information on inter- and intra-provincial migration 
in the period from 1982 to 1987. The survey tabulated interprovincial migrants as 
those who moved from cities, towns, or rural counties of other provinces to the place 
of enumeration and were living there on 1 July 1987. They consist of two types of 
migrants: (1) those who registered their official residence in the new place and; (2) those 
who did not, but had left their place of origin at least six months earlier, and had 
lived in the new place equal to or fewer than five years. 

Migrants, based on the 1990 census definition, were referred to as those whose 
current place of residence on 1 July 1990 was in a different county or city on 1 July 
1985. They included all those who changed their official residence registration to the 
new counties or cities, and also those who did not, but who had left their place of 
origin for at least one year and had lived in the new localities equal to or fewer than 
five years. Those who moved within a county or city were, therefore, not counted 
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Figure 1: Provinces of Mainland China, 1990. 

G7an 

as migrants (China, 1993(4):509,512-513). Similar to the tabulations of the 1987 
survey, the 1990 census distinguished between inter- and intra- provincial migrants. 
Interprovincial migrants were those who moved to the place of enumeration from 
cities, towns, and counties of other provinces. The total number of interprovincial 
migrants for China as a whole (28 provinces) increased from 6.24 million in 1982-87 
to 10.75 million in 1985-90. During the 1982-87 period, Heilonjiang was the larg­
est net loser (the number of net migrants was -0.26 million), while Shanghai had 
the largest net gain of 0.28 million migrants. Return migration flows were one of 
the major factors in migration patterns in this period. 

During the 1985-90 period, however, Guangdong became the most important 
destination for interprovincial migrants, its net migrants being approximately one 
million. Sichuan was the largest net exporter of migrants with a net loss of 0.86 
million. The overall pattern of interior-to-coast migration in 1985-90 was even 
clearer than in 1982-87. 

Hainan, formerly part of Guangdong province, was given provincial status in 1988, 
and no data on migration to Tibet were collected. Therefore, theses two provinces 
are excluded from the analysis. Except for Tibet and Hainan (Figure 1), a 28 x 28 
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interprovincial migration data matrix can be derived from these two sources. The 
migration data from the 1990 census can further be disaggregated into male and 
female populations. Such a disaggregation will create a unique opportunity to make 
some empirical observations regarding male and female interprovincial migration 
in China. 

THE MODEL 

Suppose a known interprovincial migration matrix is available. This implies that 
outmigrants, 0i' leaving each origin, and inmigrants, Dj , arriving at each destination 
are known. The modeling problem is to estimate the probability, Pij' that a migrant 
will move from origin to destination. The well-known entropy maximizing (EM) 
method is to maximize the Shannon entropy (Shannon and Weaver, 1949). 

subject to constraints: 

H =-LPiilnPii 
i,j 

n 
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i=l 
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where H is the Shannon entropy measure, M is total number of mi.grants in the 
whole migration matrix, dij is the distance between provinces, and d is the aver­
age or mean distance traveled by all migrants. Equations (2) and (3) are constraints 
that ensure that the predicted 0i and Dj are consistent with the observed 0i and 
Dj' Equation (4) is the constraint for the mean migration distance. The result of 
the maximization is 

(5) 

which assigns migrants to provinces in the least biased way, subject to the constraints 

(2) to (4) (where Ai' ri' and 13 are parameters associated with constraints (2), (3), 

and (4) respectively). When Pij is defined with respect to interprovincial migration 

in the form of Pij = Mi/M, then Equation (5) can be expressed in a more familiar 

form of 
M = A 0 B D . exp (-13 d ) I} I I }} I} 

(6) 
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where Mij is the predicted number of migrants between provinces, and Mij PijM. 
The balancing factors are represented by Ai and Hi (Fotheringham and O'Kelly, 
1989; Pooler, 1994). 

Suppose that in addition to the known information on migration above, further 
information on multiple prior probabilities related to migration arc available, that is 

ITq&k) (i,j = 1, ... n; k=I, ... m) kr (7) 

k 

These multiple prior probabilities are defined based on qij = rij ! L rij' where rij 
i,j 

is any measure on, or between provinces, which can be justified to have an effect 

on interprovincial migration. Minimizing the Kullback (1959) information 

. " Pij I(p:q) = L.JPij In--, 
i,j IT q&k) (8) 

k 

subject to constraints (2), (3), (4), and (7) will produce a model that contains the 
multiple prior information qij' However, another adjustment is required in that 
constraint (4) is replaced by 

"p .. ln d· = In d L.J 1/ 1/ ' (9) 
i,j 

Equation (9) is the constraint for the mean logarithmic distance. The rationale for 
using constraint (9) on the spatial separation is that it results in an inverse power func­
tion of distance deterrence for the model that can be more appropriate for model­
ing inter-regional or longer distance migration (Fotheringham and O'Kelly, 1989; 

Ottensmann, 1997). Such an inverse power function is employed in the present study. 

It is established that the mean trip length is used as the cost constraint if the cost 

function is exponential (e -(Xlii), For the inverse power function, however, the term 

d~{3 can be written as e-{3Jnd'i, and thus the mean value of logarithmic distance 
1/ 

(In dij in Equation (9) is the cost constraint (Wilson, 1971, 1974). A number of 
researchers adopt the mean value of logarithmic distance (cost) to derive or to cali­
brate the spatial interaction models, such as Wilson (1974), Pooler (1994, 1995) 
and Fotheringham and O'Kelly (1989). When the inverse power function is used, 
the costs or spatial separation between regions can be defined as the logarithm of 
distance. Therefore, the interpretation of the inverse power function is that distance 

is perceived in logarithmic form by migrants. 
The result of the minimization of (8), subject to constraints (2), (3), and (9), 

together with consideration of Mij = pijM is 
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M·· = ITq~k) AOBDd~f3 
') ')' , ) ) ') 

(10) 

k 

Equation (10) is the n1ultivariate spatial interaction model. It can be seen that Equa­
tion (10) is an estimation of migration flows, which allows for inclusion of k prior 
probability distributions. In the present study, a production- and cost-constrained 
version of the MSIM is used, 

M -IT (k)AOd- f3 
ij - qij i i ij (11) 

k 

which results when Equation (8) is minimized, subject only to constraints (2) and (9). 
The balancing factor Ai ensures that constraint (2) is satisfied, and is defined as 

(12) 

where IT qhk
) in the present study includes the two additional explanatory variables, 

k 

the migrant stock (Sij) and the annual average total investment (hj), which will be 
discussed in the next section. 

When % in Equation (11) is replaced by the two explanatory variables, Equation 
(11) becomes 

M = h·s··AOd~f3 
') ) ') , , ') (13) 

where 

A = [" h'S.d~f3_-1 , L..i) ') ') 
j 

(14) 

Equation (13) is the production- and cost-constrained MSIM used in the present 
study. 

An important component in the process of modeling is to evaluate the model's 
ability to replicate known migration flows. A more accurate replication may dem­
onstrate that the proposed model has a solid empirical basis, and can be used for 
prediction with confidence. On the other hand, less accuracy of the model may alert 
investigators to look into the causes behind it. Such cau:;es are usually important 
clues for further improvement of the model. 

Many goodness-of-fit statistics have been used in spatial interaction modeling. These 
statistics arc discussed and reviewed by Wilson (1976), Knudsen and Fotheringham 
(1986), and Fotheringham and O'Kelly (1989). The present study employs the percent 
misallocated to assess the model's ability to replicate the known migration flows. 
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This statistic can be calculated using the predicted and observed migration flow 
matrices. It takes the following form: 

502:1 'I %E=- M-M 
1/ 1/ ' M .. 

(15) 
1,/ 

where %E represents the percentage of misallocated migrants in the migration matrix, M 

is total number of migrants, and IMij M i; I ' is the absolute difference between the pre­

dicted and the observed migrant flows from origin to destination, respectively. Any cal­
culated value for this measure indicates the percentage of migrants that would have to 

be redistributed to the correct provinces in order for the predicted migration matrix to 
match the observed matrix of migration. Based on this measure, further explorations can 
be made as to which provinces, and how many migrants, are over- or under-predicted. 

TWO ADDITIONAL VARIABLES 

Migrant Stock 

Migrant stock refers to a group of people who previously moved to a destination, 
implying that an area of origin has a number of migrants who are already at the 
destination. Migrant stock is taken to represent the social networks that are of 
pivotal importance in labor migration (Massey et al., 1993; Massey, 1990, 1986; 
Montgomery, 1991). As mentioned earlier, China's migration prior to the late 1970s 
resulted mainly from political and military considerations. Two main interprovincial 
migrations occurred in the period of mid-1960s through the 1970s. The first was 
the sending of urban youths to the interior or frontier provinces, and the second 
was the migration caused by the relocation of industry from the coast to interior 
provinces (the so-called third-front industrial construction). A large number of urban 
youths were sent to the countryside and remote regions, and one to two million were 
engaged in interprovincial migration during the height of the Cultural Revolution in 
1968-76 (Bernstein, 1977; Shen and Tong, 1992). Most of these transferred urban 
youth were allowed to return the areas of origin after 10 to 12 years (Banister, 1987). 
The interprovincial migration due to the construction of the 'three-fronts' industries 
between 1964 and 1979 (Shen and Tong, 1992) was also reversed in the 1980s. 
To take these effects into account in modeling Chinese migration, the variable of 
migrant stock is employed. Return migrants result from the changing political and 
economic situation in the 1980s. This implies that if a coast province has a large 
migrant stock in an interior or frontier province, this coast province is most likely 
to experience a large wave of return migration. 

Also, it should be noted that not every migrant to the interior and frontier regions 
returned back to their home place, since some people married a local person, and in 
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particular, some of the relocated industrial plants were in the interior permanently. In 
such cases, the migrant stock constitutes a major facilitator in attracting subsequent 
migrants from the places of origin. Therefore, migrant stock has particular signifi­
cance in the modeling of interprovincial migration in China when compared with 
a migration system with a free market economy in the developed world. It should 
be noted that linking the migrant stock with the subsequent migration is not new 
(Plane, 1981; Pooler, 1995), though it has never attempted for Chinese migration 
data. What the present study emphasizes is that using the concept of the migrant 
stock can capture some unique features of the Chinese interprovincial migration 
flows due to political and ideological interventions. 

Theoretical exploration on the roles played by chain migration has led to an 
eventual formulation of social network theory, which is increasingly used to explain 
migration (Massey et ai., 1993). According to this theory, rural labor migrants may 
lack human or financial capital but possess some form of social capital (networks 
established in the community). It is upon this form of social capital that rural labor 
migrants heavily relied to facilitate their mobility strategies. 

Given the fact that the formal communication mechanisms in developing coun­
tries, such as telephone and internet services, are usually not adequate, informal 
connections facilitated by migration-chain effects would have been widespread in 
rural-to-urban or inter-regional migration (Brown and Stetzer, 1996). In the 1980s, 
the migrant enclaves found in China's large cities, such as Beijing, Shanghai and 
Guangzhou, are clear indications of the overwhelming importance of the chain mi­
gration (Ma and Xiang, 1998). In addition, sample surveys conducted in the early 
1990s revealed that 57 to 78 percent of rural labor migrants obtained employment 
through friends and relatives at the destination in China (Zhang et aI., 1997). This 
demonstrates that the migrant stock who was voluntarily moved to prosperous 
areas in the reform period acts as an important facilitator to attract migrants from 
origins. 

In the present study, migrant stock is defined as the number of people who moved 
previously to the destinations. In order for this measure to be fully operational, it 
can be expressed as a probability of the total number of migrants. Put in the form 
of the following equation. 

M() 
s ij = -2.: 'I , (i = 1, ... , n; j = 1, ... , n) 

M() 
'I 

(16) 

i,j 

where Sij is probability of migrant stock and MS is the number of people in the 
destination who moved from the origin during the period 1982-87. 

Selection of Destination Variables 

The section above has discussed the migrant stock variable in China's migration 
context, which is origin and destination specific. The question turns to what destination 
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Table 1: The correlation matrix for variables (1) to (6). 

Variable (1) (2) (3) (4) (5) (6) 

(1) 1.000 

(2) -0.269 1.000 

(3) -0.223 0.936"* 1.000 

(4) 0.518** -0.187 -0.250 1.000 

(5) -0.372 0.373 0.253 -0.041 1.000 
~:- ::-

(6) -0.019 0.841 0.877'* 0.093 0.184 1.000 

Notes: Variable names are indicated in the text. ,:." correlation is significant at the 0.01 

level (2-tailed). 

variables should be selected and included in this particular migration modelling. One 
important rule for selection of variables in modelling migration is to avoid using 
inter-correlated variables (Alonso, 1968), or multicollinearity. Based on this rule, 
a correlation matrix is calculated among six potential destination variables, which 
are available to the present study (China, 1996). These six variables are (1) ratio of 
cultivated land to population in 1990, (2) per capita CDP in 1990, (3) per capita 
total investment in 1986-90, (4) length of railway in 1988, (5) annual average total 
investment in 1986-90, and (6) percentage of urban population in 1990. 

If the correlation coefficients between variables are highly significant, one of each 
pair of the variables will be excluded from the models. On the basis of examination 
of the correlation matrix, as illustrated in Table 1, it is found that the correlation co­
efficients are highly significant among four of the pairs of variables, that is, variables 
(4 )-(1), (3)-(2), (6)-(2), and (6)-(3). Thus, either variables (4), (3), (6) or variables 

(1), (2), (3) should be excluded. 
A second rule for including destination variables into the migration models in 

the present study is the extent to which the variables have improved the performance 
of the model. In this study, the model is calibrated with variables (1) to (6), and the 
calibrated results are shown in Table 2. The model satisfies both origin and cost 

constraints. Preliminary calibrations of the model with variables (1) to (6) in Table 2 
show that only variable (5), the annual average total investment, improves the model 
performance by 6.85 percent in comparison with the conventional model, and other 
variables offered no improvement in performance to the model. This may be a result 
of the fact that all the other variables cannot be justified as having significant effects 
on China's inter-provincial migration. As a result, according to the second rule, variable 

(5) remains in the model. On the other hand, as discussed in the preceding paragraph, 
variable (5) also has no significant correlation with other variables. Therefore, on the 

basis of the correlation analysis and preliminary calibration for the six variables, it 

may be concluded that variable (5), the annual average total investment in 1986-90, 
is properly included in the model. 
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Table 2: Model results for migration in 1985-90: percentage of migrants misallocated 
(0/0 E). 

Variable %E Beta 

The conventional model 34.6339 1.1317 

(1) 41.7926 1.2362 

(2) 34.6340 1.1320 

(3) 37.2584 1.1466 

(4) 40.4040 1.2157 

(5) 27.7793 1.1208 

(6) 36.1392 1.1493 

Note: Variable names are indicated in the text. The conventional model is M·· = AOd-:: f3 • 
'I "'1 

The calibrated model equation that includes possible destination variable is M .. = A Od-:: f3 W " 
'I "If 1 

where Wj represents anyone of the six variables as specified in the text, and all other terms 
are defined in section 3. 

Annual Average Total Investment 

In China, even though forces that determine investment patterns may be differ­
ent from those in free market system (particularly so prior to the economic reform 
of the late 1970s), it is observed that the capital investment determines productive 
capacity, creates labor demand, and eventually prompts inter-regional migration. 
The investment discussed in this paper includes domestic loans, foreign investment, 
fund raising, investment from the central government's appropriation, and others. 
Two questions are worth discussion. The first is why the annual average of total 
investment is chosen rather than any specific yearly total investment, and the second 
is why total investment, rather than foreign investment, is chosen. 

The amount of investment in China displays a cyclic pattern in the period prior 
to the economic reform (Ma and Wei, 1997). Yearly fluctuation of the total invest­
ment in the 1980s is also observed. This is because the investment depends on 
China's own economic cycle, and foreign investors are sensitive to policy changes 
and political stability. Therefore, the annual average of the investment can avoid 
such fluctuation. Specifically, the annual average total investment between 1986 and 
1990 (five-year average) is used for modeling migration in the period 1985-90, while 
the annual average total investment between 1985 and 1987 (three-year average, 
data before 1985 is not available) is used for modeling migration in 1982-87. The 
data on the total annual investment are from the State Statistical Bureau of China 
(China, 1996). 

Previous investigations on China's migration, together with studies of China's 
regional development, have used foreign investment data for explanation. One of 
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the obvious shortcomings of using the foreign investment data is that other invest­
ments are ignored, and therefore a distorted picture may arise. Even for Guangdong, 
with the largest amount of the foreign investment among the provinces of China, 
the foreign investment is not the most important variable to explain migration at 
county level (Fan, 1996). Fan's observation may suggest that the foreign invest­
ment variable is not adequate enough to account for migration, since it excludes 
other types of investments. According to Kueh (1992), for each dollar of foreign 
investment received, an average of three yuan (Chinese currency unit) is spent for 
providing infrastructure, such as electricity, transport, and so on. Therefore, the 
foreign investment in China generates corresponding internal investments, and the 
internal investments create employment opportunities as well. 

Another factor concerning China's investment is the power of fiscal transfer by 
the central government. Although China decentralized its fiscal system and allowed 
provinces to retain a considerable amount of revenue from local economic activities 
in the 1980s, fiscal transfer by the central government still has an impact on overall 
capital flows into some interior provinces and the border regions. Guangxi, Yun­
nan, Guizhou, Xinjiang, Qinghai, Ningxia, Tibet and Inner Mongolia all received 
subsidies. The fiscal transfer not only alleviates poor economic conditions, but also 
provides job chances. All these aspects of investment should be taken into account. 
The annual average total investment reflects the above factors of investments. 

The variable of the annual average total investment, Vj' enters into the model in 
a probability form in order to avoid the effect of the units of the variable. It only 
changes the scaling of the balancing factors, but smaller balancing factors are more 
convenient to interpret. The variable is calculated as follows 

V· 
hj ==~, (j==l, ... n) 

L..J Vj 

(17) 

where hj is probability of the annual average total investment in province j. The 
variable is calculated for two time periods, one for the period between 1985-87, 
and the other for 1986-90. 

ANALYSIS OF THE MODELING RESULTS 

In the actual modeling process, Equation (13) and its three dis aggregated models, 
as specified in Equations (18) to (21), are estimated for comparative purposes. 

M == AOd~{3 
I) I I I) (CM) (18) 

M· == hAOd~{3 
I) ) I I I) (MSIM1) (19) 
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M· = sA-Od~f3 
'1 '1 I I '1 (MSIM2) (20) 

M = hs··A-Od~f3 
'1 1 '1 I I If 

(MDIM3) (21) 

All the terms were introduced and defined earlier and are not repeated here. 
For convenience of presentation and analysis, Equations (18), (19), (20), and (21) 
are referred to as the conventional model (CM), MSIMl, MSIM2, and MSIM3, 
respectively, where MSIM refers to multivariate spatial interaction model. 

Overall Performance, 1985-90 and 1982-87 

Table 3 presents the modeling results for total interprovincial migration during the 
period 1985-1990. Three observations can be made from this table. First, the value 
for beta (/3) decreases from 1.1317 for the CM to 0.4132 for MSIM3, indicating 
a 63.5 percent decrease. This change illustrates that when the two variables, the 
annual average total investment in 1986-90 and the migrant stock of 1982-87, are 
included, the effect of distance impedance on interprovincial migration appears to 
be partially replaced by these two variables. This reduction may imply that a des­
tination province with high employment opportunities will attract a considerable 
number of migrants. For certain groups of migrants in some provinces, physical 
distance seems to be a secondary consideration for migration decision-making. For 
example, migration from Xinjiang to Guangdong is a case in point. 

Second, a comparison of the beta values between MSIM1 and MSIM2 on the one 
hand, and the conventional model on the other, shows that the migrant stock variable 
in MSIM2 has a much more depressing effect on the beta value than the investment 
variable in MSIM1. This is an obvious confirmation that in a developing country 
like China past migration plays an important role in the process of interprovincial 
migration in terms of overcoming the difficulty of the distance barriers (Cai, 1999). 
It also might be that the migration stock variable partially replaces the distance variable 
since migration stock itself tends to be a negative function of physical distance. As 
distance of migration between origin and destination increases, the chance of having 
an effective social network becomes smaller. Therefore, in such circumstances distance 
and migration stock, to some degree, are complementary variables. Also, a certain 

Table 3: Parameters of the CM and the MSIMs for total interprovincial migration, 
1985-90. 

Model type eM MSIM1 MSIM2 MSIM3 

Beta 1.1317 1.1208 0.2263 0.4132 

O/OE 34.63 29.78 16.73 17.76 
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number of migrants are driven by marriage. They move over long distances, or even 
across several provinces, for instance, those who migrate from southwestern China 
to the coastal provinces (Fan and Huang, 1998). Apparently, to a certain degree, the 
marriage migration in China helps explain the reduction in the value of beta. 

Third, the goodness-of-fit statistic, represented by the percentage of migrants 
misallocated (shown as % E in Table 3), shows that the performance of the model 
is improved considerably from the conventional model (34. 63 percent) to MSIMI 
(29.78 percent) to MSIM3 (17.76 percent).1 The percentage of migrants misallocated 
among the cells of the migration matrix measures the percent of the total number 
of predicted migrants that are allocated to incorrect cells in the migration matrix. 
The magnitude of this index illustrates that the conventional model correctly assigns 
about 65 percent of the total number of migrants in 1985-90, whereas MSIM3, with 
inclusion of the two additional variables, correctly allocates about 82 percent of all 
migrants, this being a 17-percentage point improvement. This also illustrates the valid­
ity of the multivariate approach to modeling China's interprovincial migration. 

Finally, Table 3 also indicates that the performance of all the models with addi­
tional variables(s) is better than the conventional model. Moreover, a comparison 
of all the models with additional variable(s) shows that MSIM2 performs best, albeit 
its performance is close to that of the MSIM3. This observation illustrates that for 
this particular study, the inclusion of additional variables into the spatial interaction 
model does not necessarily lead to improvement of performance. This somewhat 
counter-intuitive finding may be partially a result of a fitting criterion being only to 
let the estimated and observed mean of logarithmic migration distance converge. 

For modeling the interprovincial migration in 1982-87, MSIMs 2 and 3 are not 
estimated, because the migrant stock variable is not available. Table 4 shows the 
modeling results. The table indicates that the beta value is in a trend of decrease, 
and the overall performance as measured by the percentage of migrants misallocated 
is improved by 4.69 percent between the CM and MSIMI. This again confirms the 
validity of the MSIM. It can be noted that the magnitude of such an improvement of 
the model performance is comparable with the improvement (4.85 percent) between 
the CM and MSIM1 for migration in 1985-90 as shown in Table 3. 

Male and Female Migration 

The seminal treatment of gender differentials in migration was by Ravenstein (1885). 
He noted that the principal characteristics of female migration can be summarized as 

Table 4: Parameters of the CM and MSIM1, 1982-87. 

Model type eM MSIM1 

Beta 1.0851 1.0737 

%E 38.60 33.91 
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follows: (1) women are more mobile than men, (2) women dominate short distance 
migration but men dominate long distance migration, and (3) like men, women mi­
grate based on economic motivations. Ravenstein's observations provide an important 
basis on which research on the gender issues of migration in the contemporary era 
can be undertaken. 

The relative numbers of men and women in migration streams can be measured by 
sex ratios (i.e., number of men per 100 women). Three patterns of gender differentials 
in migration have been identified in developing countries: high sex ratios in lower 
income countries of Africa, female dominance (or low sex ratios) in Latin America, 
and diverse sex ratios in Asia (Hugo, 1991). 

In China, the sex ratios for out-migration ranged from a high of 286 in Beijing 
to a low of 47.5 in Guizhou in the 1985-90 period, with most provinces (24 or 25 
out of 28 provinces) showing high sex ratios in both in- and out-migration flows 
(China, 1993). It can be assumed that female migrants in China were more hindered 
by the spatial distance and relied more on their own social networks (here previous 
migrants) than do the male migrants. 

Table 5 summarizes statistics of the modeling results for both male and female 
interprovincial migrants in 1985-90. It appears from the table that a difference can 
be clearly identified with respect to properties of the estimated model between male 
and female migrations. The following paragraphs summarize the difference. 

First, for the conventional model and MSIMl, the difference in the values of beta 
between male and female migrants indicates that female interprovincial migrants are 
more likely to be constrained by the spatial separation. However, for MSIMs 2 and 
3 the values for beta for female interprovincial migration are considerably lower 
than those for the male migration, and this is particularly so for the MSIM2. Such 
a disparity in the values for beta indicates that in interprovincial migration in China 
females are more likely to follow their predecessors, illustrating the importance of 
the past migrants in guiding and channeling the subsequent migrations. 

Second, with the addition of the two variables into the model, the beta values are 
in general in a trend of decrease from the CM to MSIMI to MSIM3. For example, 
the beta value for male migration decreases from 1.113 8 for the CM to 0.4081 for 
MSIM3, while the corresponding value for female migration declined from 1.1576 
to 0.3287. A comparison of the beta values between MSIMI and MSIM2 reveals that 
the two introduced variables exert a varied influence on male and female migrations. 

Table 5: Parameters of the CM and MSIMs for male and female migrations, 1985-90. 

Model type eM MSIMI MSIM2 MSIM3 

male female male female male female male female 

Beta 1.1138 1.1576 1.0836 1.1986 0.2243 0.1406 0.4081 0.3287 

0/0 E 32.83 39.50 29.59 32.08 17.55 20.62 18.39 19.79 
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Table 6: Rank correlation coefficient (rs) between the balancing factor (Ai) for 
total migration,1985-90. 

Models compared rs Significance (two-tailed) 

CM & MSIMI 0.950 0.000 

CM&MSIM2 0.185 0.346 

CM & MSIM3 0.373 0.050 

MSIMI & MSIM2 0.144 0.465 

MSIMI & MSIM3 0.337 0.080 

MSIM2 & MSIM3 0.963 0.000 

Finally, the performance of the estimated models, measured by the percentage of 
migrants misallocated, is better for male migration than that for female migration. 
However, a common feature is that the performance is improved from the CM to 
MSIM1 and to MSIM3. It should be noted that the main purpose of the inclusion 
of the MSIM2 in Table 5 is to illustrate whether the two variables have a different 
impact on replicating the observed migration flows, as compared to MSIMl. Table 5 
indicates that such a varied impact does exist. 

In order to evaluate the impact of the variables further, Table 6 shows the calcu­
lated rank correlation coefficients between the balancing factors of the migration 
models for total interprovincial migration in the period 1985-90. It is reasoned 
that when the impact of a variable is larger, the rank correlation between the two 
sets of the balancing factors arising from the two different models would tend to be 
smaller. It is indicated from the table that the rank correlation coefficient between 
the CM and MSIMI is 0.950, while the corresponding value between the CM and 
MSIM2 is 0.185. This demonstrates that when the investment variable is entered 
into the model, the ranking of the balancing factors is similar to that for the CM, 
whereas when including the migrant stock variable in the CM, the rank of the bal­
ancing factor changes considerably. Again, this result leads to the conclusion that 
the impact of the migrant stock variable on the model is more considerable than 
the investment variable. 

Error Analysis-Residuals 

The most general way of identifying errors in the model predictions is to make a 
comparison between the observed and predicted migration flows. Although in the 
above discussion the percentage of misallocated migrants is used as the goodness­
of-fit statistic to evaluate the overall accuracy in prediction of the models, the predic­
tion errors for the specific province-to-province flows cannot be uncovered by this 
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overall statistic. Therefore, a residual analysis between the observed and predicted 
migration flows is undertaken for this purpose. 

The relative residuals are calculated for the purpose of investigating the accu­
racy of prediction of interprovincial migration between specific pairs of provinces. 
Following the convention indicated by Thomas (1968) and Thomas and Huggett 
(1980), the relative residuals can be expressed as follows. 

RE = (M~ -M)j M~ 1J 11 11' (22) 

where RE represents the relative residual, and Mi~ and Mij are the observed and 
predicted migration flows, respectively. It is clear from Equation (22) that negative 
relative residuals imply over-predicted reality, while positive residuals represent 
under-prediction of the observed migration flows. This measure is useful in several 
ways. First, it can be easily calculated and interpreted. Second, the relative residuals 
calculated in this way for the present case could reveal particular errors in predic­
tion for interprovincial migrations between specified pairs of provinces. A further 
aspect of the relative residuals is the possibility of the mapping of this measure 
or the examination of the residual values for migrants either leaving or entering 
a particular province based on the residual matrix. The pattern of residual signs 
provides information on the observed attractiveness of provinces for interprovincial 
migration flows. The power of such attractiveness can be found from the magnitude 
of the residual values. 

It would be tedious and unnecessary to discuss the relative residuals associated 
with all the models calibrated in the present study. Rather, the relative residuals based 
on the eM and MSIM3 are discussed to demonstrate to what extent the predicted 
flows of the models match the observed flows. Table 7 shows the average of the 
relative residuals and standard deviations for out-migration, based on the eM and 
MSIM3. The average values are calculated based on all the specific residual values 
for a particular origin province. For example, the average value for Beijing is -0.485 
based on the eM, and this figure is computed based on all of the 27 relative residu­
als for out-migration flows from Beijing to the 27 possible destination provinces. 
It is indicated from Table 7 that for the eM, for all the 28 origin provinces, the 
average of the relative residuals are negative, implying, on average or in most cases, 
that out-migration flows are over-predicted. The highest average value is found in 
the provinces of Zhejiang (-0.029), whereas the lowest one is in the provinces of 
Guangxi (-10.9). It appears in Table 7 that the average relative residuals are highly 
associated with their standard deviations. Indeed, the correlation coefficient between 
these two indices is found to be -0.987. Therefore, the average of the relative residu­
als based on the eM shows that the migration flows are poorly predicted by the 
model, or the spatial distance is not sufficient to explain the observed migration 
patterns. This corresponds with the results revealed by the goodness-of-fit statistic 
as discussed earlier. 
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Table 7: Average and standard deviation of the relative residuals for out-migration 
1985-90. 

eM MSIM3 

IDno. Province average sd average sci 

1 Beijing -0.485 ] .801 -0.103 0.465 
2 Tianjin -0.670 1.297 -0.070 0.494 
3 Hebei -1.210 1.693 -0.460 0.698 
4 Shanxi -0.818 1.822 0.020 0.704 
5 In. Mongolia -3.233 5.683 -0.609 0.883 
6 Liaoning -0.847 1.273 -0.107 0.483 
7 Jilin -2.357 3.283 -0.201 0.441 
8 Heilongjiang -3.499 5.974 -0.430 0.662 
9 Shanghai -1.288 1.722 -0.320 0.784 

10 Jiangsu -0.642 1.07] -0.299 0.769 
11 Zhejiang -0.029 0.550 0.065 0.374 
12 Anhui -1.061 1.303 -0.246 0.649 
13 Fujian -1.331 2.436 -0.302 0.697 
14 Jiangxi -2.654 6.311 -0.411 0.794 
15 Shandong -0.683 1.092 -0.242 0.644 
16 Henan -0.660 1.152 -0.183 0.445 
17 Hubei -1.040 2.459 -0.238 1.073 
18 Hunan -1.825 2.813 -0.751 2.072 
19 Guangdong -2.226 5.471 -0.271 0.734 
20 Guangxi -10.900 26.267 -1.82] 1.902 
21 Sichuan -1.077 2.482 -0.185 0.342 
22 Guizhou -6.673 15.920 -0.787 1.482 
23 Yunnan -6.899 16.972 -0.577 1.038 
24 Shaanxi -0.883 1.792 -0.043 0.379 
25 Gansu -1.878 5.356 -0.475 1.111 
26 Qinghai -] .487 2.790 -0.337 1.297 
27 Ningxia -2.450 6.459 -0.563 1.468 
28 Xinjiang -2.651 4.088 -0.348 0.554 

For MSIM3, the average values and standard deviations of the relative residu-
als are reduced considerably in comparison with those derived from the eM. The 
average values of the relative residuals based on MSIM3 range from 0.02 in Shanxi 
to -1.821 in Guangxi. Only in one other province is the average of the relative 
residuals slightly larger than that of Shanxi; and this is Zhejiang, with the average 
value of 0.065. All other average values are negative. This observation demonstrates 
that the accuracy of the prediction of the interprovincial flows by MSIM3 is greatly 
improved. It also echoes, in general, the result revealed by the goodness-of-fit as 
already examined. 



48 J. He & J. Pooler 

However, the average value of the relative residuals for out-migration flows cannot 
reveal the errors in prediction for interprovincial migration between specific pairs 
of provinces. It may also not indicate both the sign and magnitude of the residu­
als for specific flows. Hence, it is necessary to use other ways to investigate such 
aspects of the relative residuals. The residual matrix can be employed to fulfill such 
a purpose. Table 8 shows the matrix of the relative residuals based on MSIM3 for 
migration flows in the period 1985-90. Several observations can be made regard­
ing this matrix. First, among the 756 (756 = 28 x 28 - 28) specific migration flows, 
there are 464 specific interprovincial flows that arc over-predicted (those flows with 
negative signs), implying that about 61.4 percent of the total number of flows falls 
in the range of overestimation by MSIM3. The remaining flows (38.6 percent) in 
the matrix are underestimated by MSIM3. It is also noteworthy that variation in 
the underestimated migration flows (the cells with positive values) is smaller than 
those overestimated ones (the cells with negative signs). 

Second, the distribution of the 464 overestimated migration flows varies among 
the 28 provinces viewed both as origins and destinations. Table 9 presents a summary 
of this distribution. When provinces arc viewed as origins (or out-migration from 
origins), the number of overestimated flow ranges from eight flows in Shanxi to 25 
flows in Guangxi. Only in three other origins is the number of overestimated flows 
greater than 20; and these are the provinces of Hebei (21), Inner Mongolia (21), and 
Hunan (22). When provinces are viewed as destinations (or in-migration to destina­
tions), the number of overestimated flows varies between eight flows in Guangdong 
to 25 flows in Hunan. It is further found that in other four provinces the number of 
overestimated flows to destinations is found to be more than 20. These four provinces 
are Guizhou (24), Hebei (23), Inner Mongolia (21), and Shandong (21). 

This pattern of overestimation is associated with underestimation in the remaining 
flows. In other words, examination of the residual patterns can be appropriately made 
in the context of the whole out- or in-migration fields (Evans and Pooler, 1987). For 
example, there arc 25 overestimated out-migration flows from Guangxi, and only 
two flows are underestimated. These two flows are out-migrations to Zhejiang (with 
the relative residual of 0.23) and to Guangdong (with the relative residual of 0.48). 
It appears that the underprediction for these two flows causes all other out-flows 
from Guangxi to be over-predicted. The province of Guangdong accounts for about 
72 percent of all out-migration from Guangxi. Guangdong is the destination that 
receives the largest amount of migrants from all other provinces, and Guangxi is one 
of largest origins for sending out-migrations (China, 1993). These two provinces are 
situated in close proximity to one another. The underprediction for out-migration 
flows from Guangxi to Guangdong reveals that the destination of Guangdong is 
strongly favored by migrants from Guangxi. On the other hand, in order to satisfy 
the origin and distance constraints, the underprediction for these two flows occurs 
at the expense of other flows being overestimated. Therefore, Guangdong, as the 
largest economically booming destination in China, exerts a considerable impact on 
the magnitude of other flows. 



Table 8: Matrix of the relative residuals based on the observed and predicted inter-provincial migration flows, MSIM3, 
1985-90. 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2f) 21 22 23 24 25 26 27 2B 

1 0 -D.65 -D.26 -D.09 -D.S2 -D.86 -D.S2 031 0.16 -D.OI 0048 0.04 0.29 -D.OS -D.04 0.01 034 -DAS 0.81 0.09 OSO -D.64 034 0.18 -D.63 -D.11 -1.12 -D. 15 

2 -D.ll 0 0.22 0.05 -D.43 -D.23 OSI 0.69 -D.05 -D.55 0.21 0.24 0.29 -D.60 -D.64 -D31 0.01 -D.60 0040 0040 034 -1.35 0.16 -D.Ol 0.55 -D.16 0.16 -1.16 

3 0.44 0.27 0 -D34 -D.20 0.08 -D.14 0.09 -D.9S -D.72 -DS2 -1.04 -1.97 -D.99 -DS2 -D.68 -DS6 -D.17 -D.07 0.26 -D.09 -2.91 -D.42 -0.67 0.17 -0.18 -0.77 -0.28 

4 0.21 0.12 -0042 0 -0.06 -0.03 0.47 0.43 OS5 0.04 0.40 -0.21 0.07 0.18 -0.27 -D.Ol -DS7 0.01 034 OS5 0.45 -3.26 0.40 0.22 0.53 023 0.13 0.05 

5 -0.18 -D.25 -0.08 023 039 0.17 0.49 -0.17 -D.79 -D.4S -0.81 -1.67 0.16 -DA2 -1.21 -D.30 -1.17 -0.60 -1.01 -J.1O -3.71 -1.55 -D.27 -0.17 -2.04 -0.66 0.11 

6 0.00 -D.23 0.02 -D.44 0.10 0.05 0.19 -0.73 -DA5 -D.ll 0.05 -0.10 -0.10 -0.10 0.13 -D.1O -IS3 023 0.44 -0.07 -OS I -D.04 -0.17 0.61 0.74 0.46 -1.03 

0.00 -D39 -0.07 0.03 031 -D.03 0 0.13 -D.32 -D.60 -DSO -D.07 -D.12 0.12 0.19 -0.37 -D.72 -0.61 -0.14 033 -0.64 -0.35 -D.41 -0.42 0.65 0.24 -1.67 -0.19 

-D.06 0.16 023 -D.91 0.19 0.12 -0.62 0 -0.15 -D.34 -DA5 0.10 -1.06 -0.42 0.22 0.16 -1.69 -OS6 -0.12 0.55 -0.45 -1.19 0.27 -1.28 -0.78 -1.63 -D.55 -1.78 

9 0.13 -DS7 -D.S7 0.13 -D.14 -0.60 0.20 -0.85 0 -D.02 0.13 0.20 -0.06 -D.06 -0.16 -1.46 0.11 -D.48 0.60 0.05 0.30 -0.89 0.30 -1.11 -3.42 -0.48 -D.32 037 

10 0.29 -D.28 -D.83 -1.40 -2.97 0.19 0.12 034 033 0 -D.23 -0.21 0.18 -D.26 -0.44 -D.ll -D.G2 -1.97 0.44 -0.06 -0.56 -D.96 0.00 -D.21 033 0.43 -0.22 0.30 

11 0.25 0.06 -D.24 030 -D.16 0.47 -0.60 038 -037 -DS1 0 -034 0.22 0.18 -D.17 0.11 -D.09 -D.60 0.53 -D.Ol -036 0.11 0.10 039 0.60 0.70 0.58 -D.02 

12 0.43 0.21 -1.78 -0.16 -1.56 0.47 0.06 0.20 0.19 0.16 -D.21 0.29 0.05 -0.15 -0.54 -0.53 -D36 -DAO 0.03 -0.80 -2.12 -D.24 -0.58 -D.31 0.10 0.21 0.44 

13 0.14 -D.92 -1.72 0.52 -1.69 -D.24 -0.29 0.66 -1.34 -D.61 0.22 -D.35 0.24 -D.05 -0.46 -D.OI -D.S3 0.55 -D.04 -D.05 -1.69 -0.63 053 053 0.21 -0.47 -0.67 

14 -D.34 0.12 -2.27 -1.71 -D.38 -D.81 0.07 -D.OI -0.27 0.08 0.28 -D.14 039 0 -D.12 0.15 -D.39 -D.86 0045 -D.4S -1.11 -D.59 -0.04 -1.59 033 -0.42 -2.53 035 

15 0.16 0.05 -1.04 0.06 -D.31 0.28 0.29 0.46 -052 -D.16 0.19 -D.26 -D.60 -OS5 0 -0.04 -0.14 -D56 -D.07 0.47 -052 -2.78 -0.14 -D.54 0.44 -0.12 -1.04 0.21 

16 0.45 0.12 -D.41 -D.17 -D.64 0.03 -D.22 034 -0.18 -D.22 -D.30 -0.40 -0.87 -OSO -0.31 0.02 -DS3 0.11 -0.90 -056 -1.15 -050 -D.1O 0.22 057 0.12 0.)7 

17 0.22 0.28 -D.45 -D.14 -2.04 031 0.18 0.67 -D.25 -D.23 039 -0.14 0.11 -0.40 -4.50 0.10 0.06 0.60 0.22 0.18 -0.01 030 0.20 030 -0.97 -2.24 0.28 

18 -D56 -D53 -10.9 0.48 -DA6 -1.69 -0.77 0.01 -0.13 -0.28 -D.13 -0.29 -0.18 -0.06 -1.27 -D.12 -0.45 0 0.68 056 -0.72 -0.17 037 -1.J0 -D.n -053 -1.90 -D.02 

19 0.28 -0.77 -1.38 -0.38 -1.85 -D.27 0.03 -037 030 -D.29 0.28 -0.93 0.19 0.20 -D.46 0.18 0.15 -D.44 0 030 -0.09 O.OS 0.60 -0.12 0.62 -051 -2.73 -D.21 

20 -1.25 -1.42 -0.58 -1.55 -2.61 -2.98 -0.80 -2.69 -2.10 -1.15 023 -1.17 -DA9 -2.14 -1.52 -3.21 -1.04 -1.59 0.48 -2.21 -1.45 -1.08 -0.81 -5.14 -2.21 -9.55 -D.95 

21 -D.11 -D.42 -D.05 -D.09 -D.46 0.02 -0.05 -0.07 -DA5 0.04 0.05 -0.35 031 -0.72 -D.61 -036 -O.OS -051 0.50 -D.49 0 0.01 0.22 -0.31 -0.92 0.03 -0.63 033 

22 -0.77 -D.32 0.20 -0.01 -D.89 -1.37 0.10 -1.51 -0.82 0.40 030 0.20 038 -0.29 0.09 0.48 -D.22 -D.15 035 -D.75 -035 -0.16 -1.26 -2.57 -4.94 -5.25 -2.91 

23 -D.87 -D54 -DS1 -0.46 -1.09 -1.63 0.41 -1.55 -0.52 0.20 0.41 0.27 0.02 -0.09 051 -D.10 -D.22 -D. 17 0.24 -1.39 0.11 -D.40 0 -1.18 0.04 -2.36 -4.44 -0.85 

24 -D.04 -D.92 -D. 18 0.07 0.17 0.18 0.29 0.10 -0.03 -D. 15 -D.24 0.08 -0.26 -0.25 -D.14 0.19 -D.69 -037 0.26 0.26 0.03 -D.58 0.47 035 0.56 -D.S2 0.46 

25 -0.28 -2.30 -D.34 033 0.27 -D.10 0.11 -D.78 -D.28 -0.17 -0.01 -D.64 033 -0.08 -D54 0.03 -1.09 -D.44 0.02 -3.92 -0.37 -3.75 -0.80 -O.Q3 055 034 0.65 

26 -0.10 -0.65 -D.06 -<5.22 -D.79 -D.23 -D.62 -DSO 0.19 0.11 0.51 034 0.05 -D.12 023 034 OSO -D.07 -D.04 0.41 0.08 -0.33 -253 0.11 -0.03 0 -0.31 0.58 

27 0.03 -3.94 -D.OI -1.16 023 -0.60 0.42 -1.38 0.11 0.12 -D.65 OSl -0.35 -0.49 -DA9 OS4 -0.19 -1.04 OSO -1.60 -0.6.1 -<5.31 -0.93 -0.13 033 0.69 0.68 

28 -0.07 -0.12 -D.36 -1.30 -D.93 -D.93 0.18 -1.31 0.50 -D.05 0.07 0.04 -D.04 -1.25 0.16 0.27 0.10 -0.34 -D.82 -D.41 -0.04 -1.50 -OS2 0.07 0.20 -D.78 -OS.; 0 

Notes: (1) The numbers of the first column and first row stand for the provincial ID number as the order specified in Table 7. 
(2) Large residuals are defined as those equal to or beyond -1.50, and such residuals are balded. 
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Table 9: Number of overestimated (negative sign) flows for province as both origin 
and destination, based on the residual matrix of Table 8, 1985-90. 

Out- Out-
migration In-migration migration In-migratic 

Province flow flow Province flow flow 

Beijing 15 13 Shandong 17 21 

Tianjin 13 18 Henan 17 14 

Hebei 21 23 Hubei 11 20 

Shanxi 8 17 Hunan 22 25 

In. Mongolia 21 21 Guangdong 15 8 

Liaoning 15 16 Guangxi 25 12 

Jilin 18 10 Sichuan 18 19 

Heilongjiang 18 11 Guizhou 18 24 

Shanghai 16 19 Yunnan 18 15 

Jiangsu 16 19 Shaanxi 13 20 

Zhejiang 12 12 Gansu 18 10 

Anhui 14 16 Qinghai 15 15 

Fujian 18 13 Ningxia 16 20 

Jiangxi 18 20 Xinjiang 18 13 

Third, large overestimated flows, which arc defined as the relative residuals beyond 
or equal to -1.50 (bolded in the residual matrix), are found to be mainly the in­
migration flows to the five provinces of Hcbci, Inner Mongolia, Guizhou, Qinghai, 
and Ningxia. It can be observed and calculated from Table 8 that 65 specific flows 
are under this category, and these five provinccs account for 33 such flows. Guizhou 
and Ningxia each have nine such overestimated flows. 

Finally, the largest ovcrestimated flow is found in out-migration from Hunan to 
Hcbei, and the relativc residual is -10.9. This prediction error results mainly from the 
migrant stock variable for this particular flow. Specifically, migration from Hunan 
to Hebei in 1982-87 accounted for 49.4 percent in the total out-migration from 
Hunan, whereas this figure was found to be only 1.83 percent in 1985-90. In fact, 
for the origin of Hunan province, the correlation coefficicnt between out-migration 
i;) 1982-87 (used as the migrant stock) and out-migration in 1985-90 is only 0.2106. 
Hence, this largest overestimated flow is caused mainly by asymmetry betwecn the 
migrant stock and out-migration in 1985-90. The asymmetry has to do with the 
return migration from Hunan to Hebei, which occurred in the early 1980s. Between 
the mid-1960s and 1970s, coal mining in Hunan was assisted with a large number of 
coal workers dispatched from Hebei, and they returned to their origin in the early 
1980s (Shen and Tong, 1992). 
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